Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.641
1.
Sci Rep ; 14(1): 10418, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710793

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Anti-Bacterial Agents , Drug Delivery Systems , Membranes, Artificial , Polymers , Silicon Dioxide , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Polymers/chemistry , Porosity , Sulfones/chemistry , Sulfones/administration & dosage , Drug Liberation , Animals , Azithromycin/administration & dosage , Azithromycin/pharmacokinetics , Azithromycin/chemistry , Azithromycin/pharmacology , Humans
2.
Braz Oral Res ; 38: e037, 2024.
Article En | MEDLINE | ID: mdl-38747824

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Alkaline Phosphatase , Cell Differentiation , Dental Pulp , Lipopolysaccharides , NF-kappa B , Nitriles , Osteogenesis , Periodontal Ligament , Stem Cells , Humans , Lipopolysaccharides/pharmacology , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Dental Pulp/cytology , Dental Pulp/drug effects , NF-kappa B/metabolism , Alkaline Phosphatase/analysis , Cell Differentiation/drug effects , Stem Cells/drug effects , Stem Cells/physiology , Cells, Cultured , Nitriles/pharmacology , Sulfones/pharmacology , Reproducibility of Results , Time Factors , Young Adult , Adolescent
3.
Water Sci Technol ; 89(9): 2558-2576, 2024 May.
Article En | MEDLINE | ID: mdl-38747967

In this study, membranes blended with polysulfone (PSU) and polyetherimide (PEI) polymers in different ratios were fabricated. Their potential to remove pollutants from rivers, which are a potential drinking water source, was investigated. Scanning electron microscopy analysis revealed that the PSU membranes had a dense and homogeneous layer, whereas the addition of PEI formed a spongy substrate. The water content of the fabricated membranes varied between 5.37 and 22.42%, porosities 28.73-89.36%, contact angles 69.18-85.81%, and average pure water fluxes 257.25-375.32 L/m2 h. The blended membranes removed turbidity, chloride, alkalinity, conductivity, sulfate, iron, manganese, and total organic carbon up to 98.32, 92.28, 96.87, 90.67, 99.58, 94.63, 97.48, and 79.11%, respectively. These results show that when PEI was added to the PSU polymer, the filtration efficiency increased owing to an increase in the hydrophilicity of the membranes. Blending these two polymers enabled the optimization of membrane properties such as permeability, selectivity, and mechanical strength. In addition, membrane fabrication processes are simple and incur low costs.


Filtration , Membranes, Artificial , Polymers , Sulfones , Polymers/chemistry , Sulfones/chemistry , Filtration/methods , Water Purification/methods , Water Pollutants, Chemical/chemistry , Microscopy, Electron, Scanning
4.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702036

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Apoptosis , Benzhydryl Compounds , Granulosa Cells , Mitochondria , Phenols , Reactive Oxygen Species , Humans , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Cell Survival/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Sulfones/toxicity , Sulfones/chemistry , Cell Line , Calcium/metabolism , Fluorocarbons
5.
Int Immunopharmacol ; 133: 112096, 2024 May 30.
Article En | MEDLINE | ID: mdl-38657496

Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. NOD-like receptor protein 3 (NLRP3) inflammation is involved in the development of myocarditis and is closely related to the form of cell death. Inhibiting pyroptosis mediated by NLRP3 inflammasome can reduce cardiac fibrosis, although its exact mechanism remains unknown. In this study, we induced Viral myocarditis (VMC) via infection of CVB3 to explore the relationship between pyroptosis and fibrosis. Our results showed that intraperitoneal injection of an NLRP3 inhibitor MCC950 or use of NLRP3-/- mice inhibited cardiac pyroptosis mediated by NLRP3 inflammasome in VMC. CXCL4 is a chemokine that has been reported to have pro-inflammatory and pro-fibrotic functions. In VMC, we further found that pyroptosis of Mouse myocardial fibroblasts (MCF) promoted the secretion of CXCL4 by activating Wnt/ß-Catenin signaling. Subsequently, the transcriptome sequencing data showed that CXCL4 could promote cardiac fibrosis by activating PI3K/AKT pathway. In summary, infection of CVB3 induced host oxidative stress to further activate the NLRP3 inflammasome and ultimately lead to heart pyroptosis, in which MCF secreted CXCL4 by activating Wnt/ß-Catenin signaling and CXCL4 participated in cardiac fibrosis by activating PI3K/AKT pathway. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.


Fibrosis , Mice, Inbred C57BL , Mice, Knockout , Myocarditis , NLR Family, Pyrin Domain-Containing 3 Protein , Platelet Factor 4 , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Myocarditis/metabolism , Platelet Factor 4/metabolism , Male , Humans , Myocardium/pathology , Myocardium/metabolism , Furans/pharmacology , Inflammasomes/metabolism , Fibroblasts/metabolism , Signal Transduction , Sulfones/pharmacology , Sulfonamides/pharmacology , Indenes
6.
Sci Total Environ ; 929: 172189, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38583624

This study explores the incorporation of Nb2AlC and Mo3AlC2 MAX phases, known for their nano-layered structure, into polyether sulfone (PES) membranes to enhance their antifouling and permeability properties for pathogen microorganism filtration against bovine serum albumin (BSA) and Escherichia coli (E. coli). The composite membranes were characterized for their structural and morphological properties, and their performance in mitigating biofouling was evaluated. The structural characterizations have been performed for all the prepared MAX phases and corresponding composite membranes. The antioxidant ability of Nb2AlC and Mo3AlC2 MAX phases was defined by the DPPH radical scavenging assay, and the highest antioxidant ability was found to be 59.35 %, while 53.69 % scavenging potential was recorded at 100 mg/L. The percentage scavenging ability was raised with an increase in concentrations. The antimicrobial properties of MAX phases, evaluated as the minimum inhibitory concentration, were stated against several pathogen microorganisms. The tested compounds of Nb2AlC and Mo3AlC2 composites containing MAX phases exhibited excellent chemical nuclease activity, and it was determined that Nb2AlC caused double strand DNA cleavage activity while Mo3AlC2 induced the complete fragmentation of the DNA molecule. Biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was studied against Staphylococcus aureus, and Pseudomonas aeruginosa and the maximum biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was found to be 77.15 % and 69.07 % against S. aureus and also 69.74 % and 65.01 % against P. aeruginosa. Furthermore, Nb2AlC and Mo3AlC2 MAX phases demonstrated excellent E. coli growth inhibition of 100 % at 125 and 250 mg/L.


Biofouling , Escherichia coli , Membranes, Artificial , Polymers , Sulfones , Biofouling/prevention & control , Sulfones/pharmacology , Sulfones/chemistry , Polymers/pharmacology , Escherichia coli/drug effects , Biofilms/drug effects , Filtration
7.
Environ Int ; 186: 108643, 2024 Apr.
Article En | MEDLINE | ID: mdl-38615544

Exposure to bisphenol S (BPS) is known to adversely affect neuronal development. As pivotal components of neuronal polarization, axons and dendrites are indispensable structures within neurons, crucial for the maintenance of nervous system function. Here, we investigated the impact of BPS exposure on axonal and dendritic development both in vivo and in vitro. Our results revealed that exposure to BPS during pregnancy and lactation led to a reduction in the complexity, density, and length of axons and dendrites in the prefrontal cortex (PFC) of offspring. Employing RNA sequencing technology to elucidate the underlying mechanisms of axonal and dendritic damage induced by BPS, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted a significant alteration in the oxidative phosphorylation (OXPHOS) pathway, essential for mitochondrial function. Subsequent experiments demonstrate BPS-induced impairment in mitochondrial function, including damaged morphology, decreased adenosine triphosphate (ATP) and superoxide dismutase (SOD) levels, and increased reactive oxygen species and malondialdehyde (MDA). These alterations coincided with the downregulated expression of OXPHOS pathway-related genes (ATP6V1B1, ATP5K, NDUFC1, NDUFC2, NDUFA3, COX6B1) and Myosin 19 (Myo19). Notably, Myo19 overexpression restored the BPS-induced mitochondrial dysfunction by alleviating the inhibition of OXPHOS pathway. Consequently, this amelioration was associated with a reduction in BPS-induced axonal and dendritic injury observed in cultured neurons of the PFC.


Axons , Dendrites , Mitochondria , Oxidative Phosphorylation , Phenols , Sulfones , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Phenols/toxicity , Dendrites/drug effects , Oxidative Phosphorylation/drug effects , Female , Sulfones/toxicity , Axons/drug effects , Pregnancy , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Mice
8.
Sci Total Environ ; 927: 172379, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614345

Bisphenol S (BPS) is an alternative chemical to bisphenol A commonly used in food packaging materials. It raises concerns due to potential adverse effects on human health. However, limited evidence exists regarding reproductive toxicity from BPS exposure, and the mechanism of associated transgenerational toxicity remains unclear. In this study, pregnant SD rats were exposed to two different doses of BPS (0.05 or 20 mg/kg) from GD6 to PND21. The objective was to investigate reproductive and transmissible toxicity induced by BPS, explore endocrine effects, and uncover potential underlying mechanisms in rats. Perinatal exposure to BPS in the F0 generation significantly decreased the rate of body weight, ovarian organ coefficient, and growth and development of the F1 generation. Notably, these changes included abnormal increases in body weight and length, estrous cycle disruption, and embryonic dysplasia in F1. 4D-DIA proteomic and PRM analyses revealed that exposure to 20 mg/kg group significantly altered the expression of proteins, such as Lhcgr and Akr1c3, within the steroid biosynthetic pathway. This led to elevated levels of FSH and LH in the blood. The hypothalamic-pituitary-ovarian (HPO) axis, responsible for promoting fertility through the cyclic secretion of gonadotropins and steroid hormones, was affected. RT-qPCR and Western blot results demonstrated that the expression of GnRH in the hypothalamus was decreased, the GnRHR in the pituitary gland was decreased, and the expression of FSHß and LHß in the pituitary gland was increased. Overall, BPS exposure disrupts the HPO axis, hormone levels, and steroid biosynthesis in the ovaries, affecting offspring development and fertility. This study provides new insights into the potential effects of BPS exposure on the reproductive function of the body and its relevant mechanisms of action.


Endocrine Disruptors , Phenols , Rats, Sprague-Dawley , Reproduction , Sulfones , Animals , Female , Phenols/toxicity , Rats , Pregnancy , Sulfones/toxicity , Reproduction/drug effects , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects , Ovary/drug effects
9.
Bull Environ Contam Toxicol ; 112(4): 63, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38615298

Research on thermal receipts has previously focused on the toxic effects of dermal exposure from the most publicized developers (e.g., bisphenol A (BPA) and bisphenol S (BPS)), while no studies have reported on the other solvent-extractable compounds therein. Diphenyl sulfone (DPS) is a sensitizer added to thermal receipts, but little is known about DPS concentrations in receipts or potential toxicity. Here, we quantified BPA, BPS, and DPS concentrations and tentatively identified the solvent-extractable compounds of thermal receipts collected from three South Dakota (USA) cities during 2016-2017. An immortalized chicken hepatic cell line, cultured as 3D spheroids, was used to screen effects of DPS, BPS, and 17ß estradiol (E2; 0.1-1000 µM) on cell viability and gene expression changes. These chemicals elicited limited cytotoxicity with LC50 values ranging from 113 to 143 µM, and induced dysregulation in genes associated with lipid and bile acid homeostasis. Taken together, this study generated novel information on solvent-extractable chemicals from thermal receipts and toxicity data for DPS.


Benzhydryl Compounds , Biphenyl Compounds , Phenols , Sulfones , Sulfones/toxicity , Benzhydryl Compounds/toxicity , Solvents
10.
J Environ Sci (China) ; 143: 126-137, 2024 Sep.
Article En | MEDLINE | ID: mdl-38644011

Radioisotope leaking from nuclear waste has become an intractable problem due to its gamma radiation and strong water solubility. In this work, a novel porous ZnFC-PA/PSF composite sphere was fabricated by immobilization of ferrocyanides modified zinc phytate into polysulfone (PSF) substrate for the treatment of Cs-contaminated water. The maximum adsorption capacity of ZnFC-PA/PSF was 305.38 mg/g, and the removal efficiency of Cs+ was reached 94.27% within 2 hr. The ZnFC-PA/PSF presented favorable stability with negligible dissolution loss of Zn2+ and Fe2+ (< 2%). The ZnFC-PA/PSF achieved high-selectivity towards Cs+ (Kd = 2.24×104 mL/g) even in actual geothermal water. The adsorption mechanism was inferred to be the ion-exchange between Cs+ and K+. What's more, ZnFC-PA/PSF worked well in the fixed-bed adsorption (E = 91.92%), indicating the application potential for the hazardous Cs+ removal from wastewater.


Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Water Purification/methods , Sulfones/chemistry , Polymers/chemistry , Porosity , Cesium/chemistry , Waste Disposal, Fluid/methods , Zinc/chemistry , Wastewater/chemistry
11.
Org Biomol Chem ; 22(16): 3273-3278, 2024 04 24.
Article En | MEDLINE | ID: mdl-38572769

Arylsulfonyl group-bearing α,ß-unsaturated enol esters were readily assembled via the Cs2CO3-mediated union of 2-bromoallyl sulfones and cinnamic acids. The overall transformation is equivalent to an sp2 carbon-oxygen coupling reaction, and therefore constitutes a formal vinylic substitution. Several of the products display promising levels of antiproliferative activities higher than that of the anticancer drug carboplatin. Thiophenol reacted with 2-bromoallyl sulfones under identical conditions to afford α-thiophenyl-α'-tosyl acetone via an apparent aerial oxidation.


Antineoplastic Agents , Cell Proliferation , Esters , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/chemical synthesis , Structure-Activity Relationship , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology , Vinyl Compounds/chemical synthesis
12.
Environ Monit Assess ; 196(5): 455, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625667

This study is to understand the fate and ecological consequences of pyroxasulfone in aridisols of Punjab, a detailed dissipation study in soil, its influence on soil enzymes, microbial count and succeeding crops was evaluated. Half-lives (DT50) increased with an increase in the application rate of pyroxasulfone. Dissipation of pyroxasulfone decreased with increase in organic matter content of soil and was slower in clay loam soil (DT50 12.50 to 24.89) followed by sandy loam (DT50 8.91 to 17.78) and loamy sand soil (DT50 6.45 to 14.89). Faster dissipation was observed under submerged conditions (DT50 2.9 to 20.99 days) than under field capacity conditions (DT50 6.45 to 24.89 days). Dissipation increased with increase in temperature with DT50 varying from 6.46 to 24.88, 4.87 to 22.89 and 2.97 to 20.99 days at 25 ± 2, 35 ± 2 and 45 ± 2 °C, respectively. Dissipation was slower under sterile conditions and about 23.87- to 33.74-fold increase in DT50 was observed under sterile conditions as compared to non-sterile conditions. The application of pyroxasulfone showed short-lived transitory effect on dehydrogenase, alkaline phosphatase and soil microbial activity while herbicide has non-significant effect on soil urease activity. PCA suggested that dehydrogenase and bacteria were most sensitive among enzymatic and microbial activities. In efficacy study, pyroxasulfone effectively controlled Phalaris minor germination, with higher efficacy in loamy sand soil (GR50 2.46 µg mL-1) as compared to clay loam soil (GR50 5.19 µg mL-1).


Isoxazoles , Sand , Soil , Sulfones , Clay , Environmental Monitoring , Oxidoreductases
13.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673817

Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.


Biocompatible Materials , Biotechnology , Polymers , Sulfones , Tissue Engineering , Polymers/chemistry , Sulfones/chemistry , Biocompatible Materials/chemistry , Humans , Biotechnology/methods , Tissue Engineering/methods , Animals , Tissue Scaffolds/chemistry
14.
Clin Oral Investig ; 28(5): 285, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38684528

OBJECTIVE: To evaluate the effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis (AP) induced in mice. METHODS: The experimental AP was induced by pulpal exposure. To evaluate NLRP3-specific inhibitor medication (MCC950), WT mice received intraperitoneal injections, while the control received PBS (n = 10). In addition, to evaluate NLRP3 knockout, 35 wild-type (WT) and 35 NLRP3-/- mice were divided into a control group (without pulpal exposure, n = 5) and three experimental groups: after 2, 14 and 42 days after pulpal exposure (n = 10). Microscopic and molecular analyzes were carried out using a significance level of 5%. RESULTS: Exposure to MCC950 did not affect the periapical lesion size after 14 days (P = 0.584). However, exposed mice had a lower expression of IL-1ß, IL-18 and caspase-1 (P = 0.010, 0.016 and 0.002, respectively). Moreover, NLRP3-/- mice showed a smaller periapical lesion after 14 and 42 days (P = 0.023 and 0.031, respectively), as well as a lower expression of IL-1ß after 42 days (P < 0.001), of IL-18 and caspase-1 after 14 (P < 0.001 and 0.035, respectively) and 42 days (P = 0.002 and 0.002, respectively). NLRP3-/- mice also showed a lower mRNA for Il-1ß, Il-18 and Casp1 after 2 (P = 0.002, 0.036 and 0.001, respectively) and 14 days (P = 0.002, 0.002 and 0.001, respectively). CONCLUSIONS: NLRP3 inflammasome inhibition or knockout can attenuate the inflammatory events that result in the periapical lesion (AP) formation after pulpal exposure in mice. CLINICAL RELEVANCE: The NLRP3 inflammasome may be a therapeutic target for AP, and new approaches may verify the impact of its inhibition (through intracanal medications or filling materials) on the bone repair process and treatment success.


Disease Models, Animal , Indenes , Inflammasomes , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Periapical Periodontitis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Inflammasomes/metabolism , Sulfonamides/pharmacology , Furans/pharmacology , Caspase 1/metabolism , Interleukin-1beta/metabolism , Sulfones/pharmacology , Mice, Inbred C57BL , Male
15.
Pestic Biochem Physiol ; 201: 105854, 2024 May.
Article En | MEDLINE | ID: mdl-38685234

Pyridine alkylsulfone derivatives typified by oxazosulfyl (Sumitomo Chemical Company Ltd.) and compound A2 (Syngenta) represent a new class of insecticides, with potent activity against several insect orders. Whilst the MOA of this class has been attributed to interaction with the voltage-gated sodium channel (VGSC), here we present strong evidence that their toxicity to insects is mediated primarily through inhibition of the vesicular acetylcholine transporter (VAChT). Alkylsulfone intoxication in insects is characterised by (i) a reduction in cholinergic synaptic transmission efficiency demonstrated by a depression of cercal afferent activity in giant-interneurone preparations of American cockroach (Periplaneta americana), (ii) selective block of cholinergic-transmission dependent post-synaptic potentials in the Drosophila giant-fibre pathway and (iii) abolition of miniature excitatory post-synaptic currents (mEPSCs) in an identified synapse in Drosophila larvae. Ligand-binding studies using a tritiated example compound ([3H]-A1) revealed a single saturable binding-site, with low nanomolar Kd value, in membrane fractions of green bottle fly (Lucilia sericata). Binding is inhibited by vesamicol and by several examples of a previously identified class of insecticidal compounds known to target VAChT, the spiroindolines. Displacement of this binding by analogues of the radioligand reveals a strong correlation with insecticidal potency. No specific binding was detected in untransformed PC12 cells but a PC12 line stably expressing Drosophila VAChT showed similar affinity for [3H]-A1 as that seen in fly head membrane preparations. Previously identified VAChT point mutations confer resistance to the spiroindoline class of insecticides in Drosophila by Gal-4/UAS directed expression in cholinergic neurones and by CRISPR gene-editing of VAChT, but none of these flies show detectable cross-resistance to this new chemical class. Oxazosulfyl was previously shown to stabilise voltage-gated sodium channels in their slow-inactivated conformation with an IC50 value of 12.3µM but inhibits binding of [3H]-A1 with approximately 5000 times greater potency. We believe this chemistry class represents a novel mode-of-action with high potential for invertebrate selectivity.


Insecticides , Sulfones , Animals , Insecticides/pharmacology , Insecticides/chemistry , Sulfones/pharmacology , Sulfones/chemistry , Drosophila , Periplaneta/drug effects , Periplaneta/metabolism , Synaptic Transmission/drug effects , Acetylcholine/metabolism
16.
Mol Biol Rep ; 51(1): 502, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598020

BACKGROUND: Thyroid cancer, originating in the neck's thyroid gland, encompasses various types. Genetic mutations, particularly in BRAF and RET genes are crucial in its development. This study investigates the association between BRAF (rs113488022) and RET (rs77709286) polymorphisms and thyroid cancer risk in the Khyber Pakhtunkhwa (KP) population. METHODS: Blood samples from 100 thyroid cancer patients and 100 healthy controls were genotyped using ARMS-PCR followed by gel electrophoresis and statistical analysis. RESULTS: Analysis revealed a significant association between the minor allele T of BRAF (rs113488022) and thyroid cancer risk (P = 0.0001). Both genotypes of BRAF (rs113488022) showed significant associations with thyroid cancer risk (AT; P = 0.0012 and TT; P = 0.045). Conversely, the minor allele G of RET (rs77709286) exhibited a non-significant association with thyroid cancer risk (P = 0.2614), and neither genotype showed significant associations (CG; P = 0.317, GG; P = 0.651). Demographic and clinical parameters analysis using SPSS showed a non-significant association between BRAF and RET variants and age group (P = 0.878 and P = 0.536), gender (P = 0.587 and P = 0.21), tumor size (P = 0.796 and P = 0.765), or tumor localization (P = 0.689 and P = 0.727). CONCLUSION: In conclusion, this study emphasizes the significant association between BRAF polymorphism and thyroid cancer risk, while RET polymorphism showed a less pronounced impact. Further validation using larger and specific datasets is essential to establish conclusive results.


Proto-Oncogene Proteins B-raf , Sulfones , Thyroid Neoplasms , Uridine/analogs & derivatives , Humans , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/epidemiology , Thyroid Neoplasms/genetics , Alleles , Proto-Oncogene Proteins c-ret/genetics
17.
Protein Sci ; 33(5): e4977, 2024 May.
Article En | MEDLINE | ID: mdl-38591646

Chemical warfare nerve agents and pesticides, known as organophosphorus compounds inactivate cholinesterases (ChEs) by phosphorylating the serine hydroxyl group located at the active site of ChEs. Over the course of time, phosphorylation is followed by loss of an organophosphate-leaving group and the bond with ChEs becomes irreversible, a process known as aging. Differently, structurally related irreversible catalytic poisons bearing sulfur instead of phosphorus convert ChEs in its aged form only by covalently binding to the key catalytic serine. Kinetic and crystallographic studies of the interaction between Torpedo californica acetylcholinesterase (TcAChE) and a small organosulfonate, methanesulfonyl fluoride (MSF), indeed revealed irreversibly methylsulfonylated serine 200, to be isosteric with the bound aged sarin/soman analogues. The potent bulky reversible inhibitor 7-bis-tacrine (BTA) adopts, in the active site of the crystal structure of the MSF-enzyme adduct, a location and an orientation that closely resemble the one being found in the crystal structure of the BTA-enzyme complex. Remarkably, the presence of BTA accelerates the rate of methanesulfonylation by a factor of two. This unexpected result can be explained on the basis of two facts: i) the steric hindrance exerted by BTA to MSF in accessing the active site and ii) the acceleration of the MSF-enzyme adduct formation as a consequence of the lowering of the rotational and translational degrees of freedom in the proximity of the catalytic serine. It is well known that pralidoxime (2-Pyridine Aldoxime Methyl chloride, 2-PAM) alone or in the presence of the substrate acetylcholine cannot reactivate the active site serine of the TcAChE-MSF adduct. We show that the simultaneous presence of 2-PAM and the additional neutral oxime, 2-[(hydroxyimino)methyl]-l-methylimidazol (2-HAM), triggers the reactivation process of TcAChE within the hour timescale. Overall, our results pave the way toward the likely use of a cocktail of distinctive oximes as a promising recipe for an effective and fast reactivation of aged cholinesterases.


Acetylcholinesterase , Cholinesterase Inhibitors , Pralidoxime Compounds , Sulfones , Taurine/analogs & derivatives , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/chemistry , Oximes/chemistry , Serine
18.
Luminescence ; 39(4): e4734, 2024 Apr.
Article En | MEDLINE | ID: mdl-38576335

Simultaneously improving the stability and photoluminescence quantum yield (PLQY) of all inorganic perovskite nanocrystals (NCs) is crucial for their practical utilization in various optoelectronic devices. Here, CsPbBr3 NCs coated with polyethersulfone (PES) were prepared via an in-situ co-precipitation method. The sulfone groups in PES bind to undercoordinated lead ion (Pb2+) on the CsPbBr3 NCs, resulting in significant reduction of surface defects, thus enhancing the PLQY from 74.2% to 88.3%. Meanwhile, the PES-coated NCs exhibit high water resistance and excellent heat and light stability, maintaining over 85% of the initial PL intensity under thermal aging (70°C, 4 h) and continuous 365 nm ultraviolet (UV) light irradiation (24 W, 8 h) conditions. By contrast, the PL intensity of the control NCs dramatically dropped to less than 40%. Finally, a diode emitting bright white light was fabricated utilizing the PES-coated CsPbBr3 NCs, which exhibits a color gamut of ~110% NTSC standard.


Calcium Compounds , Nanoparticles , Oxides , Polymers , Titanium , Sulfones
19.
Chemosphere ; 357: 142082, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642776

Studies have shown that bisphenol S (BPS) is mainly present as its conjugated metabolites in human blood. However, the distribution of conjugated BPS metabolites in different human blood matrices has not been characterized. In this study, paired human serum and whole blood samples (n = 79) were collected from Chinese participants, and were measured for the occurrence of BPS and 4 BPS metabolites. BPS was detectable in 49% of human serum (

Phenols , Sulfones , Humans , Phenols/blood , Phenols/metabolism , Sulfones/blood , Sulfones/metabolism , Male , Female , Environmental Pollutants/blood , Environmental Pollutants/metabolism , Adult , Glucuronides/blood , Glucuronides/metabolism , Sulfuric Acid Esters/blood , Middle Aged
20.
Environ Pollut ; 349: 123939, 2024 May 15.
Article En | MEDLINE | ID: mdl-38593938

Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.


Apoptosis , Autophagy , Mice, Inbred ICR , Ovary , Oxidative Stress , Phenols , Sulfones , TOR Serine-Threonine Kinases , Animals , Female , Phenols/toxicity , Autophagy/drug effects , Apoptosis/drug effects , Mice , Ovary/drug effects , Ovary/metabolism , TOR Serine-Threonine Kinases/metabolism , Pregnancy , Oxidative Stress/drug effects , Sulfones/toxicity , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects , Maternal Exposure , Animals, Newborn
...